МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РАСПРЕДЕЛЕНИЯ СВЕТОВОГО ПОЛЯ ВБЛИЗИ ФОКУСА ВЫСОКОАПЕРТУРНОЙ ОПТИЧЕСКОЙ СИСТЕМЫ

Н. Б. Вознесенский, Т. В. Иванова, Г. Н. Виноградова

Рассматривается численное моделирование на основе векторной теории дифракции пространственного распределения составляющих электрического вектора светового поля вблизи фокуса оптических систем с высокими числовыми апертурами.

Необходимость развития методов математического моделирования пространственного распределения поля в изображении точки высокоапертурных систем на основе векторного подхода диктуется значительным влиянием векторной природы света на тонкую структуру изображения и, следовательно, на передаточную функцию оптических систем с высокими числовыми апертурами. В целом ряде работ [1-4] приведены методики расчета интенсивности полей для высокоапертурных изображений точки, однако в них не рассматривается техника детального расчета векторной комплексной амплитуды поля, которая важна для многих приложений. Одним из таких приложений является исследование и компьютерное моделирование формирования дифракционных колновых фронтов сравнения (ДВС) для правильной интерпретации интерференционных картин контроля качества объективов микроскопов. Кроме этой задачи существует обширный круг вопросов, связанных с исследованиями сверхразрешения в оптических приборах, где моделирование распределения составляющих электрического и магнитного векторов поля требуется для анализа взаимодействия света с нанометровыми неоднородностями объекта.

В данной работе предлагается подход, который может быть положен в основу математической модели образования изображения высокоапертурными оптическими системами, а также при больших углах дифракции. Как и в работе [5], воспользуемся моделью линейно-поляризованной векторной плоской волны, определяемой первоначальным направлением поляризации **p**₀ и вектором **k**_{ii}:

$$\mathbf{u}_{ij}(\mathbf{r}') = \mathbf{u}_{ij}^{0} \exp\left(\mathbf{k}_{ij}^{T} \mathbf{r}'\right), \tag{1}$$

где

$$\mathbf{u}_{ij} = \frac{\left(\mathbf{k}_{ij} \times \mathbf{p}_{0}\right)}{\left|\mathbf{k}_{ij} \times \mathbf{p}_{0}\right|}.$$
(2)

Поле вблизи фокуса оптической системы рассматривается как суперпозиция плоских волн:

$$\mathbf{u}(x',y',z') = \sum_{i} \sum_{i} \mathbf{u}(\mathbf{r}').$$
(3)

Следует отметить, что условие линейной поляризации указанной модели волн не является препятствием для моделирования любых форм поляризации, так как для этого достаточно использовать описание TE и TM волн совместно.

Для расчета распределения составляющих вектора **u** вблизи фокуса необходимо связать взаимную ориентацию векторов отдельных плоских волн с относительными координатами (ρ_x, ρ_y) в выходном зрачке оптической системы, используя векторное

Вознесенский Н.Б., Иванова Т.В., Виноградова Г.Н. Математическое моделирование распределения светового поля вблизи фокуса высокоапертурной оптической системы.

описание (1), если вектор поляризации $\mathbf{p}_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. После преобразований получим следующие

выражения для компонентов вектора и:

$$\mathbf{u}(x',y') = \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix} = \begin{pmatrix} F^{-1} [f(\rho_x,\rho_y)f_{12}(\rho_x,\rho_y)] \\ F^{-1} [f(\rho_x,\rho_y)f_{22}](\rho_x,\rho_y) \\ F^{-1} [f(\rho_x,\rho_y)f_{32}](\rho_x,\rho_y) \end{pmatrix},$$
(4)
rde $f_{12}(\rho_x,\rho_y) = -\frac{(A'_0)^2 \rho_x,\rho_y}{\sqrt{1-(A'_0)^2 \rho_y^2}},$
 $f_{22} = \sqrt{1-(A'_0)^2 \rho_y^2},$
 $f_{32} = -\frac{\rho_y \sqrt{1-(A'_0)^2 (\rho_x^2 + \rho_y^2)}}{\sqrt{1-(A'_0)^2 \rho_y^2}},$

 $f(\rho_x, \rho_y)$ – зрачковая функция оптической системы, включающая в себя описание контура зрачка и аберрации,

 A'_0 – числовая апертура на выходе оптической системы.

Выражение (4) позволяет подробно исследовать поведение модуля и фазы каждой компоненты векторной комплексной амплитуды света вблизи фокуса не только в плоскости изображения (по x', y'), но и вдоль оси z', для чего необходимо использовать дополнительный множитель $f_z(\rho_x, \rho_y, z')$, учитывающий изменение фазы сходящихся в фокусе плоских волн по z':

$$f_{z}(\rho_{x},\rho_{y},z') = \exp\left\{0.5\pi i \left(A_{0}'\right)^{2} z' \left[2\left(\rho_{x}^{2}+\rho_{y}^{2}\right)-1\right]/\lambda\right\}.$$
(5)

Тогда для 3-х мерного распределения вектора $\mathbf{u}(x', y', z')$ имеем:

$$\mathbf{u}(x',y',z') = \begin{pmatrix} u_{x}(x',y',z') \\ u_{y}(x',y',z') \\ u_{z}(x',y',z') \end{pmatrix} = \begin{pmatrix} F^{-1} [f(\rho_{x},\rho_{y})f_{12}(\rho_{x},\rho_{y})f_{z}(\rho_{x},\rho_{y},z')] \\ F^{-1} [f(\rho_{x},\rho_{y})f_{22}(\rho_{x},\rho_{y})f_{z}(\rho_{x},\rho_{y},z')] \\ F^{-1} [f(\rho_{x},\rho_{y})f_{32}(\rho_{x},\rho_{y})f_{z}(\rho_{x},\rho_{y},z')] \end{pmatrix},$$
(6)

причем выражение (6) справедливо только для малой окрестности точки фокуса в пределах $\pm \frac{10\lambda}{A'_{\circ}}$ по каждой оси. Это ограничение связано с тем, что преобразование Фурье адекватно описывает пространственное распределение светового поля в высокоапертурных оптических системах только в пределах углов дифракции, равных примерно ± 0.1 A'₀. Сверх указанных пределов, как можно показать, связь между **u** и произведением $f \cdot f_z$ становится нелинейной. Однако для целей моделирования достаточно ограничиться этими пределами, поскольку рассматривается только очень малая зона, соответствующая области линейности, или, иными словами, изопланатическая зона.

На рис. 1-3 представлены изолинии распределения интенсивности в плоскости (x', y')для различных числовых апертур и при изменении z'. Хорошо видно влияние поляризации света и числовой апертуры на деформацию дифракционных колец. Рассмотренный подход к моделированию распределения светового поля вблизи фокуса может быть применен как для вычисления функций рассеяния и моделирования изображений в высокоапертурных системах, так и для анализа формирования вторичных источников света в ДВС-интерферометрах [6] или в оптике сверхразрешения [7].

z' = 0

Рис. 1 Распределение интенсивности (числовая апертура 0.35, длина волны 546 нм, электрический вектор направлен вертикально).

z' = 0 мкм

Рис.2 Распределение интенсивности (числовая апертура 0.65, длина волны 546 нм, электрический вектор направлен вертикально).

Рис.3 Распределение интенсивности (числовая апертура 0.85, длина волны 546 нм, электрический вектор направлен вертикально).

Вознесенский Н.Б., Иванова Т.В., Виноградова Г.Н. Математическое моделирование распределения светового поля вблизи фокуса высокоапертурной оптической системы.

ЛИТЕРАТУРА

- 1. *Hopkins H.H.* The Airy disk formula for systems of higher relative apertures // Proc. Phys. Soc. London. 1943. Vol.55. P.116-128.
- 2. *Sheppard C.J.R.*, Hrynevitch M. Diffraction by a circular aperture: a generalization of Fresnel diffraction theory // J. Opt. Soc. Amer. A. 1992. Vol.9. № 2. P.274-281.
- 3. *Cole D.C., Brouch E., Hollerbach U., Orszag S.A.* Derivation and simulation of higher numerical aperture scalar aerial images // Jap. J. Appl. Phys. Pt.1. 1992. Vol.31. № 128. P.4110-4119.
- 4. *Sheppard C.J.R., Török P.* Approximate forms for diffraction integrals in high numerical aperture focusing // Optik. 1997. Vol. 105. № 2. P. 77-82.
- 5. *Н.Б.Вознесенский, С.А.Родионов, В.М.Домненко, Т.В.Иванова* Математическая модель дифракции в оптических системах с высокими числовыми апертурами // Оптический журнал. 1997. том 64. № 3. С. 48-52
- 6. *Qian Gong, Joseph M.Geary* Modeling point diffraction interferometers // Optical Engineering. - 1996. - vol. 35. - № 2. - P. 351-356.
- Novotny L., Pohl D.W., Regli Light propagation through nanometer-sized structures: the twodimensional-aperture scanning near-field optical microscope // J. Opt. Soc. Am. A. - 1994. -Vol. 11. - № 6. - P. 1768-1779.