МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное учреждение профессионального образования

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ МЕХАНИКИ И ОПТИКИ

На правах рукописи УДК 681.7.012; 535.015

РЫТОВА Елена Сергеевна

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ДЕЦЕНТРИРОВКИ ОПТИЧЕСКИХ ПОВЕРХНОСТЕЙ НА ПОЛОЖЕНИЕ И КАЧЕСТВО ОБРАЗОВАННОГО ИЗОБРАЖЕНИЯ

Специальность 05.11.07 – «Оптические и оптико-электронные приборы и комплексы»

Автореферат диссертации на соискание ученой степени кандидата технических наук

Санкт-Петербург 2011 г. Работа выполнена в Санкт-Петербургском Государственном Университете Информационных Технологий Механики и Оптики на кафедре Прикладной и Компьютерной оптики.

Научный руководитель:	доктор технических наук, профессор, ЗВЕРЕВ Виктор Алексеевич
Официальные оппоненты:	доктор технических наук, профессор, СОКОЛЬСКИЙ Михаил Наумович ОАО «ЛОМО»
	кандидат технических наук, ФИЛАТОВ Антон Александрович ООО «НПП ВОЛО»
Ведущая организация:	НПК «ГОИ им. С.И.Вавилова» г. Санкт-Петербург

Защита состоится «<u>4</u>» <u>октября</u> 2011 г. в <u>15</u> ч. <u>30</u> мин. на заседании диссертационного совета Д.212.227.01 «Оптические и оптико-электронные приборы и комплексы» в Санкт-Петербургском Государственном Университете Информационных Технологий Механики и Оптики по адресу: г. Санкт-Петербург, пер. Гривцова, д.14, ауд. 314а.

С диссертацией можно ознакомиться в библиотеке СПб ГУ ИТМО.

Автореферат разослан «<u>30</u>» <u>августа</u> 2011 г.

Отзывы и замечания по автореферату (в 2 экз.) заверенные печатью просим направлять в адрес университета: 197101, г. Санкт-Петербург, Кронверкский пр., д. 49 СПб ГУ ИТМО секретарю диссертационного совета Д.212.227.01

Ученый секретарь диссертационного совета Д.212.227.01, кандидат технических наук, доцент

ph

В.М.Красавцев

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность диссертационной работы.

Развитие современного оптического приборостроения требует создания оптических систем, формирующих изображение в высокосветосильных пределах большого углового поля в пространстве предметов. Высокие требования к параметрам оптических систем и к качеству образованного ими изображения определяют сложность их конструкции. Объективы проекционной литографии, например, или объективы камер профессионального телевидения содержат десятки линз, к качеству изготовления которых предъявляются весьма жёсткие требования. Поэтому изготовление современных объективов, формирующих изображение высокого качества в каждой точке изображаемого пространства. представляет собой сложную технологическую задачу. Назначение допусков на изготовление деталей и отдельных сборок оптических эвристический характер, систем носит, как правило, определяемый накопленным опытом разработчика. Поэтому даже в том случае, когда оптические и механические детали объективов изготовлены строго в соответствии с указанными в чертежах допусками, нередко наблюдается снижение качества образованного ими изображения, вызванного, прежде всего, остаточными децентрировками поверхностей. Современные представления о влиянии децентрировок поверхностей на положение и качество образованного изображения обоснованного назначения для допустимых отклонений недостаточны. Следовательно, для создания современных оптических систем высокого качества исследование этих проблем является актуальной задачей.

Цель диссертационной работы

Целью работы является исследование влияния децентрировки элементов оптической системы на положение и качество образованного изображения.

Задачи исследования

1. Анализ влияния децентрировки элементов оптической системы на положение образованного изображения.

2. Анализ влияния погрешностей базирования и углов в плоскости главного сечения зеркально-призменных систем на погрешность направления оптической оси системы.

3. Анализ влияния декомпланарности нормалей к поверхностям зеркальнопризменных систем на погрешность направления оптической оси системы.

4. Анализ аберрационной функции изображения, образованного оптической системой нецентрированных поверхностей.

Методы исследования

1. Методы математического моделирования, основанные на применении соответствующих разделов математического анализа.

2. Аналитические методы, основанные на применении соотношений параксиальной оптики и теории аберраций третьего порядка.

3. Компьютерное моделирование аберрационных функций, основанное на применении современных программ расчёта оптики и программного продукта Mathcad.

Научная новизна работы

– Получены соотношения, позволяющие оценить наклон изображения при децентрировке поверхностей оптической системы;

 получено выражение закона преломления в матричной форме, на основе которого выполнен вывод инварианта декомпланарности нормалей к поверхностям зеркально-призменных систем;

– получен общий вид выражений, определяющих аберрационную функцию образованного системой нецентрированных изображения, оптических поверхностей, и выполнен их анализ; в результате анализа показано, что отдельные составляющие полученных выражений определяют обобщённую сферическую аберрацию, кому, астигматизм, кривизну поверхности изображения и его дисторсию третьего порядка, а также аберрацию, образованную световым пучком лучей, закрученным на угол $\pi/2$;

получены выражения, определяющие аберрационную функцию изображения, образованного центрированной оптической системой при децентрировке отдельного компонента системы, выполнен их анализ; показано, что в этом случае поперечная аберрация в изображении внеосевой точки содержит неизвестную ранее составляющую в виде круга, формируемая пучком лучей, закрученным на угол, равный π/2, т.е. луч, проходящий через точку входного зрачка, расположенную в меридиональной плоскости, образует сагиттальную составляющую аберрации, а луч, расположенный в сагиттальной плоскости, образует меридиональную составляющую аберрации; показано, что при этом направления скручивания пучков лучей в изображении точек, расположенных ПО разные стороны ОТ плоскости децентрировки, противоположны друг другу;

 определено условие интегрируемости полного дифференциала волновой аберрации, приведена последовательность определения функции волновой аберрации при известных функциях меридиональной и сагиттальной составляющих поперечной аберрации.

Основные результаты, выносимые на защиту

1. Определение децентрировки поверхностей и компонентов оптической системы и анализ её влияния на положение изображения.

2. Определение влияния погрешности базирования зеркально-призменных систем и погрешностей углов в плоскости главного сечения на отклонение оптической оси от номинального направления.

3. Закон преломления в матричной форме и вывод инварианта декомпланарности нормалей к поверхностям зеркально-призменных систем на его основе.

4. Аберрационная функция изображения, образованного системой нецентрированных оптических поверхностей и результаты её анализа.

5. Аберрационная функция изображения, образованного центрированной оптической системой при децентрировке её отдельных поверхностей и компонентов, и её анализ.

6. Неизвестная ранее составляющая поперечной аберрации в виде круга, формируемая при децентрировке отдельного компонента системы пучком лучей, закрученным на угол, равный $\pi/2$, при этом направления скручивания пучков лучей в изображении точек, расположенных по разные стороны от плоскости децентрировки, противоположны друг другу.

Практическая ценность

1. Полученные соотношения позволяют определить поперечное смещение и наклон изображения, образованного оптической системой децентрированных поверхностей.

2. Применение инварианта декомпланарности позволяет назначить обоснованные допуски на декомпланарность нормалей к граням призмы относительно поверхности, выбранной в качестве базовой.

3. Показано, что полученная аберрационная функция изображения, образованного системой нецентрированных поверхностей, позволяет осуществить компьютерное моделирование возможной структуры аберрационной фигуры рассеяния в изображении точки, образованном произвольно расположенной системой оптических поверхностей, а также оптической системой, обладающей плоскостью симметрии.

4. Условие интегрируемости полного дифференциала волновой аберрации и предложенная последовательность решения дифференциального уравнения позволяющие получить точное выражение функции волновой аберрации при известных функциях меридиональной и сагиттальной составляющих поперечной аберрации.

Апробация работы

Результаты выполненных исследований были доложены на XXXVIII научной и учебно-методической конференции СПбГУ ИТМО, посвященной 100-летию со дня рождения выдающегося ученого и талантливого педагога М.М. Русинова (3 – 6 февраля 2009 г.), на VI Всероссийской межвузовской конференции молодых ученых «КМУ – 2009» (14 – 17 апреля 2009 г.), два доклада на XXXIX научной и учебно-методической конференции СПбГУ ИТМО (2 – 5 февраля 2010 г.), на VII Всероссийской межвузовской конференции молодых ученых «КМУ – 2010» (20 – 23 апреля 2010 г.), на IX международной конференции «ПРИКЛАДНАЯ ОПТИКА-2010» в рамках VI международного оптического конгресса «Оптика – XXI век» (18 – 22 октября 2010) – 2 доклада, на XL научной и учебно-методической конференции СПбГУ ИТМО (1 – 4 февраля 2011 г.), на VIII Всероссийски межвузовской конференции молодых ученых «КМУ – 2010» (12 – 15 апреля 2011 г.) – 3 доклада.

<u>Публикации</u>

По материалам диссертационного исследования опубликовано 5 работ из них 3 в журналах из перечня ВАК.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Введение диссертационной работы посвящено обоснованию актуальности выбранной темы. Во введении определены цели и задачи выполненного исследования, приведены положения, раскрывающие его научную новизну и практическую ценность, изложены основные положения, выносимые на защиту.

В первой главе диссертации сформулированы определения основных понятий, связанных с децентрировкой поверхностей оптических систем в общем случае. Формулировка приведенных определений основана на применении положений ГОСТ 21495 – 76 Базирование и базы в машиностроении.

В практике проектирования оптических систем плоскость предмета (изображения) и плоскость входного (выходного) зрачка определяются, как правило, в декартовой системе координат *хоу*, при этом в соответствии с ГОСТ 7427–76 в плоскости предмета x = L, y = l, а в плоскости входного зрачка x = M, y = m, ось *ог* в центрированной оптической системы направлена слева направо вдоль оптической оси. Погрешности изготовления элементов и всей оптической системы в целом приводят к продольному (к расфокусировке) и к поперечному

смещениям изображения, к его повороту и наклону, к нарушению достигнутой в процессе проектирования коррекции аберраций изображения. Поворот изображения определяется углом поворота его вокруг оптической оси, а наклон изображения определяется углом поворота плоскости изображения вокруг произвольной оси, перпендикулярной оси *ог*.

В соответствии с РТМ3-1653-84 (Руководящий технический материал. Оптические детали. Расчет допусков центрирования) децентрировка – это смещение центра кривизны сферической поверхности с оси, определяемой базовыми поверхностями. В понятиях, определяемых ГОСТ 21495-76, под осью, определяемой базовыми поверхностями, следует понимать проектную конструкторскую базу. При произвольном расположении поверхностей вращения сферической и несферической формы в качестве конструкторской базы оптической системы естественно принять ось oz, относительно которой можно определить положение центров кривизны сферических поверхностей осевых точек и осевых линий несферических поверхностей вращения. Смещение этих точек и осевых линий относительно оси ог из номинального положения можно рассматривать как децентрировку поверхностей оптической системы в общем случае.

В этой же главе диссертации рассмотрены результаты анализа влияния децентрировки поверхностей оптических систем и отдельных компонентов на положение и качество образованного изображения, выполненного в работах Г.Г. Слюсарева, М.М. Русинова, Г.В. Погарева, Н.Н. Губеля и др.

Вторая глава диссертации посвящена анализу влияния децентрировки поверхностей вращения на положение образованного изображения. Применив соотношения параксиальной оптики, показано, что поперечное смещение изображения предмета образованного *і-*ой децентрированной y_{oi} , поверхностью оптической системы, равно $\Delta y_{oi} = (1 - V_i)\delta_i$, где δ_i – величина смещения центра кривизны і-ой поверхности относительно базовой линии (оптической оси); V_i – поперечное увеличение изображения. Пересчитанное в пространство изображений оптической системы, содержащей *k* поверхностей, $\Delta y_{i}' = \Delta y_{oi}' \prod_{i=1}^{k} V_{i+1} = \sum_{i=1}^{i=k} \delta_{i} (1 - V_{i}) \prod_{i=1}^{k} V_{i+1} .$ H, смещение становится равным ЭТО наконец, обусловленное суммарным действием децентрировок поверхностей оптической системы величина смещения изображения $\Delta y' = \sum_{i=1}^{i=k} \delta_i (1 - V_i) \prod_{i=1}^k V_{i+1}$.

Если луч исходящий из осевой точки предмета, направить вдоль базовой линии (оптической оси), то, пройдя систему децентрированных поверхностей, он выйдет под некоторым углом к ней. Заметим, что системы

децентрированных поверхностей не обладают параксиальной областью. Однако малая величина децентрировки поверхностей позволяет формулы расчета реальных лучей привести к виду, подобному соотношениям параксиальной оптики. В результате получаем, что угол отклонения осевого луча от базовой линии при децентрировке *i*-ой поверхности определяется формулой вида:

$$\sigma_{i}' = \sigma_{i+1} = \frac{n_{i}}{n_{i+1}} \sigma_{i} - \frac{n_{i+1} - n_{i}}{n_{i+1}} \frac{\delta_{i} + \sigma_{i} d_{i-1}}{r_{i}}$$

при этом расстояние от оптической оси поверхности до точки падения луча на нее $m_i = -\delta_i - \sigma_i d_{i-1}$. Заметим, что $\sigma_l = 0$. Появление угла $\sigma_{i+l} \neq 0$ и координаты $m_i \neq 0$ приводит к погрешности базирования предыдущей и последующей части оптической системы относительно последующей. Выполнив с помощью этой формулы расчет хода луча через систему из *k* поверхностей, найдем значение угла σ'_k и высоту m_k точки пересечения луча с последней поверхностью.

Оптическая система в подавляющем большинстве случаев состоит из линз, образованных сферическими поверхностями. Децентрировка поверхностей линз приводит к тому, что их оптические оси не совпадают с линией, принятой в качестве базовой (т.е. с оптической осью системы). В общем случае децентрировка поверхностей линз приводит и к поперечному, и к угловому смещению их оптических осей относительно базовой линии. Угол γ_i , образованный оптической осью *i*-ой линзы $O_i - O_i$ с оптической осью $O_o - O_o$ системы, в соответствии с рис. 1 равен $\gamma_i = -\frac{\delta_{i2} - \delta_{i1}}{r_{i2} - r_{i1} + d_i}$.

При этом угол $\theta_i = \psi_i - \gamma_i$. Из рис. 1 следует, что $tg\theta_i = \frac{\delta z_i}{y_i}$, $tg\theta_i' = \frac{\delta z_i'}{y_i'}$, где $\delta z_i = -A_{oi}\widetilde{A}_{oi}$, $\delta z_i' = -A_{oi}'\widetilde{A}_{oi'}$, $A_{oi}\widetilde{A}_i = y_i$, $A_{oi}'\widetilde{A}_i' = -y_i'$. Но $y_i' = V_{oi}y_i$, а $\delta z_i' = \theta_{oi}\delta z_i$, где θ_{oi} – продольное увеличение для изображения, в случае линзы в воздухе равное V_{oi}^2 . Тогда $tg\theta_i' = V_{oi}tg\theta_i$ или, учитывая малость углов, $\theta_i' = V_{oi}\theta_i$. При этом угол наклона изображения $\psi_i' = \psi_{i+1} = \theta_i' + \gamma_i$.

Рис. 1. Положение изображения, образованного децентрированной линзой.

Величину поперечного смещения линзы определим расстоянием от базовой линии до передней главной точки. Величина этого расстояния равна $\delta_{ki} = (r_{1i} - t_i)\gamma_i + \delta_{1i}$, где $t_i = -\frac{n_i - 1}{n_i}\frac{d_i}{r_{2i}}$. Поперечное смещение линзы приведет к отклонению луча, падающего на линзу вдоль базовой линии, на угол, равный $\sigma'_i = \frac{m_i}{f'_i}$, где $m_i = -\delta_{ki}$.

Децентрировка поверхности определяется не только величиной, но и направлением, т.е. определяется векторной величиной. Вектор децентрировки *i*й поверхности $\overline{\delta}_i$ можно представить составляющими: $\overline{\delta}_{mi}$ – в меридиональной плоскости и $\overline{\delta}_{si}$ – в условной сагиттальной плоскости, перпендикулярной меридиональной плоскости и содержащей базовую линию. При этом должно соблюдаться очевидное условие: $\delta_{mi}^2 + \delta_{si}^2 = \delta_i^2 \leq (\delta C_i)^2$, где δC_i – допустимая (наибольшая) величина модуля вектора децентрировки.

Изложенные соображения дают наглядное представление о децентрировке оптических поверхностей и о ее влиянии на положение образованного оптической системой изображения.

В третьей главе диссертации выполнен анализ влияния погрешностей изготовления и базирования при сборке отражательных призм на положение образованного изображения и осевого луча, положение которого определяет погрешность базирование составных частей оптической системы. При разработке конструкции призмы в качестве конструкторской базы принимается плоскость главного сечения, т.е. плоскость, перпендикулярная линиям

пересечения рабочих граней призмы. Одним из наиболее распространенных расчета отражательных призм является развертка отражений методов поверхностей в плоскости главного сечения призм. В общем случае из-за погрешностей изготовления развертка призм приобретает клиновидность (непараллельность следов входной и выходной граней призм в развертке), что приводит к изменению положения осевого луча, а, следовательно, к погрешности базирования предыдущей системы относительно последующей, а также К наклону изображения, к хроматическим аберрациям И К осенесимметричной аберрации широкого пучка лучей (т.е. к коме) В изображении. На рис. 2 представлена развертка отражений поверхностей прямоугольной призмы с гипотенузной отражающей гранью.

Рис. 2. Развертка прямоугольной призмы (АР-90)

Клиновидность развертки ψ определяется разностью углов: $\psi = \alpha_2 - \alpha_1$. Из рисунка следует, что $\theta = \pi - \alpha_1 - \alpha_2$, но $-\delta\theta = (\delta\alpha_1 + \delta\alpha_2) \neq 0$.В этом случае осевой луч отклониться от базовой линии на угол $\delta\psi = -\delta\theta$, что приведет к погрешности базирования предыдущей части оптической системы относительно последующей с соответствующим влиянием на положение и на качество изображения.

При малом повороте призмы в плоскости главного сечения на угол ω осевой луч отклониться от линии на угол $\varphi = 2\omega$. Следовательно, погрешность угла θ можно компенсировать поворотом призмы на угол $\omega = -\frac{1}{2}\delta\theta$. Однако,

при этом развертка отражения поверхности призмы займет положение наклонной пластинки, что приведет к поперечному смещению осевого луча, а соответственно и к погрешности базирования составных частей оптической системы.

Развертка отражений поверхностей пентапризмы БП – 90 представлена на рис. 3. Показано, что угол клиновидности развертки отражений призмы определяется формулой: $\psi = -3\delta\gamma - \delta\alpha_1 - \delta\alpha_2$. В соответствии с рис. 3 сумма углов в главном сечении пентапризмы равна $\gamma + \theta + \alpha_1 + \alpha_2 = 2\pi$. Дифференцируя это выражение, получаем $\delta\theta = -\delta\gamma - \delta\alpha_1 - \delta\alpha_2 = \psi + 2\delta\gamma$. При этом угол отклонения осевого луча от базовой линии определяется выражением: $\delta\varphi = \delta\theta + (n-1)\delta\psi = (2-3n)\delta\gamma - (n-1)(\delta\alpha_1 + \delta\alpha_2)$

Рис. 3. Развертка пентапризмы.

Изменение направления базовой линии и оборачивание изображения осуществляются в плоскости главного сечения зеркально-призменной системы. Для оборачивания изображения в перпендикулярной главному сечению плоскости применяют либо составную зеркально-призменную систему, либо заменяют отражающую поверхность призмы (или одну из отражающих поверхностей) двумя отражающими поверхностями, перпендикулярными друг другу, линия пересечения которых (ребро крыши) должна лежать в плоскости главного сечения призмы или быть параллельной ей. Наклон ребра крыши в плоскости главного сечения призмы эквивалентен наклону заменяемой крышей отражающей поверхности. В процессе изготовления призмы ребро крыши может оказаться не параллельным плоскости главного сечения. В диссертации рассмотрен случай поворота ребра крыши на малый угол ω вокруг нормали к ребру, лежащей в плоскости главного сечения, на примере призмы Шмидта ВР – 45, как показано на рис. 4. Применив матричный метод, показано, что в этом случае происходит оборачивание плоскости изображения в плоскости, перпендикулярной плоскости главного сечения призмы, и поворот изображения на угол $\phi = -2\omega$.

При номинальных значениях углов призмы нормали к преломляющим и отражающим граням параллельны друг другу, лежат в плоскости главного сечения, т.е. взаимно компланарны. При изготовлении призм практически всегда нормаль к любой грани оказывается не компланарной нормалям к другим граням. Если число граней равно трем, то такая призма превращается в усеченную пирамиду. Угол между ребром пересечения двух граней и плоскостью третьей грани называется ошибкой пирамидальности. Вывод угла для определения требования к пирамидальности призмы определяется ее базированием в конструкции оптического устройства.

Свойствами пирамидальности обладают такие призмы, как прямоугольная призма AP – 90, полупентапризма БУ – 45, равнобедренная призма BP – 180, призма Шмидта BP – 45 и их производные конструкции. При наклоне одной из граней призм, содержащих более трех рабочих граней, пирамида в общем случае не образуется, а, следовательно, понятие пирамидальности к ним не применимо. К таким призмам, например, относятся ромбическая призма БС – 0, призма Лемана ВЛ – 0, пентапризма БП – 90 и их производные конструкции.

Если плоскость главного сечения призмы выбрана в качестве базовой, то нормаль к любой грани призмы может быть компланарна в этой плоскости или некомпланарна (декомпланарна) к ней. Такой подход позволяет оценить в угловой мере декомпланарность нормали к любой грани призмы относительно любой базовой плоскости, в том числе и плоскости главного сечения призмы. Следует иметь в виду, что при определении требований к декомпланарности нормалей к поверхностям призмы необходимо учитывать условие базирования призмы в процессе контроля ее параметров.

Декомпланарность поверхностей призмы приводит к отклонению положения осевого луча относительно базовой линии. Определение угла отклонения осевого луча, прошедшего через призму с декомпланарными нормалями к поверхностям, выполнено на основе закона преломления Декарта

в векторной форме: $n(\overline{N} \times \overline{A}) = n'(\overline{N} \times \overline{A}')$, где \overline{N} – орт нормали к поверхности в точке падения луча; \overline{A} , \overline{A}' – орты направления падающего и преломленного лучей соответственно. Представив орты \overline{N} , \overline{A} и \overline{A}' через их проекции на оси координат, получаем выражение закона преломления в матричной форме:

$$\begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ N_x & N_y & N_z \\ A_x & A_y & A_z \end{vmatrix} = n' \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ N_x & N_y & N_z \\ A'_x & A'_y & A'_z \end{vmatrix}.$$

Заменив орты \overline{N} и \overline{A} их проекциями на оси координат в виде: $\overline{A} = \overline{i} \cos \alpha + \overline{j} \sin \alpha + \overline{k} \cdot \varphi$, $\overline{N} = \overline{i} \cos \beta + \overline{j} \sin \beta + \overline{k} \cdot \omega$, где φ – угол между ортом \overline{A} и плоскостью главного сечения призмы, ω – угол между ортом \overline{N} и плоскостью главного сечения призмы, и применив закон преломления в матричной форме, получено выражение:

 $n_i(\varphi_i - \omega_i \cos \varepsilon_{oi}) = n_{i+1}(\varphi_{i+1} - \omega_i \cos \varepsilon_{oi+1})$

где $\varphi_{i+1} = \varphi'_i$; ε_{oi} ; $\varepsilon_{oi+1} -$ углы падения и преломления луча. В таком виде полученное выражение представляет собой инвариант, который можно назвать инвариантом декомпланарности. В случае отражающих поверхностей следует принять n' = -n. Применив полученное выражение последовательно к каждой из поверхностей призмы, после последней поверхности получим отклонение выходящего из призмы луча от плоскости главного сечения в виде функции от отклонений нормалей ко всем поверхностям призмы от ее главного сечения, т.е. от декомпланарности нормалей к граням призмы. В диссертации приведены конкретные примеры применения полученного инварианта.

В четвертой главе диссертации волновая аберрация в изображении, образованном оптической системой произвольно расположенных поверхностей, представлена степенным рядом общего вида как функция координат в плоскости предмета и в плоскости входного зрачка, содержит члены в степени, не выше четвертой:

$$\begin{split} & W = W_0 + W_1 + W_2 + W_3 + W_4, \\ \text{где } W_0 = A_0; \\ & W_1 = A_1 m + A_2 M + A_3 l + A_4 L; \\ & W_2 = a_1 m^2 + a_2 m M + a_3 M^2 + a_4 m l + a_5 m L + a_6 M l + a_7 M L + a_8 l^2 + a_9 l L + a_{10} L^2; \\ & W_3 = b_1 m^3 + b_2 m^2 M + b_3 m M^2 + b_4 M^3 + b_5 m^2 l + b_6 m M l + \\ & + b_7 m M L + b_8 m^2 L + b_9 M^2 l + b_{10} M^2 L + \\ & + b_{11} m l^2 + b_{12} m l L + b_{13} m L^2 + b_{14} M l^2 + b_{15} M l L + b_{16} M L^2 + \\ & + b_{17} l^3 + b_{18} l^2 L + b_{19} l L^2 + b_{20} L^3; \end{split}$$

$$\begin{split} W_{4} &= c_{1}m^{4} + c_{2}m^{3}M + c_{3}m^{2}M^{2} + c_{4}mM^{3} + c_{5}M^{4} + c_{6}m^{3}l + c_{7}m^{2}Ml + c_{8}mM^{2}l + \\ &+ c_{9}M^{3}l + c_{10}m^{3}L + c_{11}m^{2}ML + c_{12}mM^{2}L + c_{13}M^{3}L + c_{14}m^{2}l^{2} + c_{15}m^{2}lL + \\ &+ c_{16}m^{2}L^{2} + c_{17}mMl^{2} + c_{18}mMlL + c_{19}mML^{2} + c_{20}M^{2}l^{2} + c_{21}M^{2}lL + \\ &+ c_{22}M^{2}L^{2} + c_{23}ml^{3} + c_{24}ml^{2}L + c_{25}mlL^{2} + c_{26}mL^{3} + c_{27}Ml^{3} + c_{28}Ml^{2}L + \\ &+ c_{29}MlL^{2} + c_{30}ML^{3} + c_{31}l^{4} + c_{32}l^{3}L + c_{33}l^{2}L^{2} + c_{34}lL^{3} + c_{35}L^{4}. \end{split}$$

Функция волновой аберрации определяет функцию поперечной аберрации:

$$\delta g' = R' \frac{\partial W}{\partial m'}, \qquad \qquad \delta G' = R' \frac{\partial W}{\partial M'},$$

где *R'* – радиус кривизны волновой сферы, концентричной изображению точки предмета, во входном зрачке оптической системы. При этом получаем:

$$\begin{split} \delta g'_{1} &= \widetilde{R}_{m} \frac{\partial W_{1}}{\partial m} = \widetilde{A}_{1}, \ \delta G'_{1} = \widetilde{R}_{s} \frac{\partial W_{1}}{\partial M} = \widetilde{A}_{2}; \\ \delta g'_{2} &= \widetilde{R}_{s} \frac{\partial W_{2}}{\partial m} = 2a_{1}m + a_{2}M + a_{4}l + a_{5}L, \\ \delta G'_{2} &= \widetilde{R}_{s} \frac{\partial W_{2}}{\partial M} = a_{2}m + 2a_{3}M + a_{6}l + a_{7}L; \\ \delta g'_{3} &= \widetilde{R}_{m} \frac{\partial W_{3}}{\partial m} = 3b_{1}m^{2} + 2b_{2}mM + b_{3}M^{2} + 2b_{3}ml + b_{6}Ml + \\ &+ b_{7}ML + 2b_{8}mL + b_{11}l^{2} + b_{12}lL + b_{13}L^{2}, \\ \delta G'_{3} &= \widetilde{R}_{s} \frac{\partial W_{3}}{\partial M} = b_{2}m^{2} + 2b_{3}mM + 3b_{4}M^{2} + b_{6}ml + b_{7}mL + 2b_{9}Ml + \\ &+ 2b_{10}ML + b_{14}l^{2} + b_{15}lL + b_{16}L^{2}; \\ \delta g'_{4} &= \widetilde{R}_{m} \frac{\partial W_{4}}{\partial m} = \delta g'_{41} + \delta g'_{42} + \delta g'_{43} + \delta g'_{44}, \\ \delta G'_{4} &= \widetilde{R}_{s} \frac{\partial W_{4}}{\partial M} = \delta G'_{41} + \delta G'_{42} + \delta G'_{43} + \delta G'_{44} \end{split}$$

Поперечная аберрация изображения, составляющие которой определяются функциями вида:

$$\delta g'_{41} = 2m(2c_1m^2 + c_3M^2) + M(3c_2m^2 + c_4M^2),$$

$$\delta G'_{42} = 2M(c_3m^2 + 2c_5M^2) + m(c_2m^2 + 3c_4M^2),$$

не зависит от положения изображаемой точки в плоскости предмета. По аналогии с аберрациями изображения, образованного центрированной оптической системой, эту аберрацию можно назвать сферической аберрацией изображения, образованного оптической системой нецентрированных поверхностей. Выполнен анализ влияния различных сочетаний величин коэффициентов с_i на вид аберрационных кривых, описываемых лучом в плоскости изображения. При этом следует обратить внимание, что аберрационные кривые, определяемые вторыми слагаемыми приведенных функций, описывается пучком лучей, закрученным на угол $\pi/2$.

На рис. 4 представлен вид кривых, описываемых точками пересечения лучей с плоскостью изображения, соответствующих ряду случайных наборов значений коэффициентов $c_1, ..., c_5$.

Рис. 4. Пятна рассеяния в изображении точки, образованном нецентрированной оптической системой, при наличии сферической аберрации.

Поперечная аберрация изображения, составляющие которой определяются функциями вида:

$$\delta g'_{42} = l(3c_6m^2 + 2c_7mM + c_8M^2) + L(3c_{10}m^2 + 2c_{11}mM + c_{12}M^2),$$

$$\delta G'_{42} = l(c_7m^2 + 2c_8mM + 3c_9M^2) + L(c_{11}m^2 + 2c_{12}mM + 3c_{13}M^2),$$

аналогично аберрации изображения, образованного центрированной оптической системой, зависящей от координат точки в плоскости предмета в первой степени, эта аберрация названа комой изображения, образованного оптической системой нецентрированных поверхностей.

На рис. 5 представлен вид кривых, описываемых точками пересечения лучей с плоскостью изображения, соответствующих ряду наборов значений коэффициентов $c_6,...,c_{13}$.

Рис. 5. Пятна рассеяния в изображении точки, образованной нецентрированной оптической системой, при наличии аберрации комы.

Представляет интерес поперечная аберрация, составляющие которой определяются функциями вида:

$$\delta g'_{43} = 2m(c_{14}l^2 + c_{15}lL + c_{16}L^2) + M(c_{17}l^2 + c_{18}lL + c_{19}L^2),$$

$$\delta G'_{43} = 2M(c_{20}l^2 + c_{21}lL + c_{22}L^2) + m(c_{17}l^2 + c_{18}lL + c_{19}L^2).$$

Первые слагаемые этих функций описывают астигматизм третьего порядка в соответствующих точках изображаемого предмета, определяемых координатами l, L, а вторые слагаемые описывают окружности при расфокусировке, вызванной кривизной поверхности изображения. Однако, в рассматриваемом случае эти окружности формируют пучки лучей, закрученные на угол $\pi/2$.

На рис. 6 представлен вид кривых, описываемых точками пересечения лучей с плоскостью изображения, соответствующих ряду наборов значений коэффициентов $c_{14},...,c_{22}$.

Рис. 6. Пятна рассеяния в изображении точки, образованном нецентрированной оптической системой, при наличии астигматизма и кривизны поверхности изображения.

И, наконец, функции вида: $\delta g'_{44} = c_{23}l^3 + c_{24}l^2L + c_{25}lL^2 + c_{26}L^3$ $\delta G'_{44} = c_{27}l^3 + c_{28}l^2L + c_{29}lL^2 + c_{30}L^3$ определяют смещение изображения точки в меридиональной и в сагиттальной плоскостях относительно номинального положения, т.е. определяют искажения (дисторсию) формы изображения предмета, образованного оптической системой нецентрированных поверхностей.

Составляющие поперечной аберрации изображения, образованного центрированной оптической системой, в общем случае могут быть представлены функциями вида:

$$\delta g' = Am(m^{2} + M^{2}) + B((3m^{2} + M^{2})l + 2mML) + + Cl(ml + ML) + DL(mL - Ml) + El(l^{2} + L^{2}), \delta G' = AM(m^{2} + M^{2}) + B((m^{2} + 3M^{2})L + 2mMl) + + CL(ml + ML) + Dl(Ml - ml) + El(l^{2} + L^{2}).$$

Пусть δ – децентрировка отдельной поверхности или ряда поверхностей. Дифференцируя функции, представленные заменим дифференциалы конечными разностями, полагая $\Delta m = \Delta l = -\delta \cos \gamma$, $\Delta M = \Delta L = -\delta \sin \gamma$., где γ – угол между направлением смещения оптического элемента и меридиональной Введение координат: плоскостью. полярных $m = a\rho \cos \alpha$, $M = a\rho \sin \alpha$; $l = r \cos \beta$, $L = r \sin \beta$, где a – радиус входного зрачка, r – расстояние от оптической оси до рассматриваемой точки в плоскости предмета, позволило выражения определяющие приращения составляющих $\delta g'$ и $\delta G'$ аберрации представить выражениями вида:

 $\Delta \delta g' = \Delta \delta g_1' + \Delta \delta g_2' + \Delta \delta g_3',$

$$\Delta \delta G' = \Delta \delta G_1' + \Delta \delta G_2' + \Delta \delta G_3',$$

где
$$\Delta\delta g'_1 = -a^2 \rho^2 \delta(A+B) [2\cos\gamma + \cos(2\alpha - \gamma)],$$

 $\Delta\delta G'_1 = -a^2 \rho^2 \delta(A+B) [2\sin\gamma + \sin(2\alpha - \gamma)]$
 $\Delta\delta g'_2 = -a\rho r \delta [(4B+C+D) \cdot \cos\alpha \cos(\beta - \gamma) + (2B+C+D) \cdot \cos(\alpha - \beta - \gamma)];$
 $\Delta\delta G'_2 = -a\rho r \delta [(4B+C+D) \cdot \sin\alpha \cos(\beta - \gamma) - (2B+C-D)\sin(\alpha - \beta - \gamma)]$
 $\Delta\delta g'_3 = -r^2 \delta [(C+2E)\cos(\beta - \gamma)\cos\beta + D\sin(\beta - \gamma)\sin\beta + E\cos\gamma],$
 $\Delta\delta G'_3 = -r^2 \delta [(C+2E)\cos(\beta - \gamma)\sin\beta - D\sin(\beta - \gamma)\cos\beta + E\sin\gamma].$

В результате преобразований первых двух выражений получено уравнение: $[\Delta \delta g'_1 + 2a^2 \rho^2 \delta (A + B) \cos \gamma]^2 + [\Delta \delta G'_1 + 2a^2 \rho^2 \delta (A + B) \sin \gamma]^2 = (A + B)^2 a^4 \rho^4 \delta^2$ Отсюда следует, что при $A + B \neq 0$ в изображение каждой точки вносится одинаковой величины кома. Преобразование следующих двух выражений привело к таким результатам:

$$z'_{m} = -2R'[(3B+C)l\cos\gamma + (B+D)L\sin\gamma] \cdot r\delta$$
$$z'_{s} = -2R'[(B+D)l\cos\gamma + (3B+C)L\sin\gamma] \cdot r\delta$$

При этом кроме меридиональной и сагиттальной составляющих астигматизма обнаружена поперечная аберрация, определяемая выражениями:

$$\Delta \delta g' = -(2B + C - D) \cdot M \delta \cdot (l \sin \gamma + L \cos \gamma)$$

 $\Delta\delta G' = -(2B + C - D) \cdot m\delta \cdot (l\sin\gamma + L\cos\gamma)$

Отсюда следует, что световой луч в изображении точки описывает окружность, определяемую уравнением

$$(\Delta\delta g')^2 + (\Delta\delta G')^2 = (2B + C - D)^2 (l\sin\gamma + L\cos\gamma)^2 \delta^2 a^2 \rho^2$$

Из вида исходных выражений следует, что эту окружность описывает, пучок лучей, закрученный на угол $\pi/2$. Справедливость этого результата подтверждена иллюстрацией на примере децентрировки последней поверхности в объективе «Авангард».

Представляет интерес вид волнового фронта, формирующего такой пучок лучей. Для определения волновой аберрации при известных функциях $\Delta \delta g' = \Delta \delta g'(m', M')$ и $\Delta \delta G' = \Delta \delta G'(m', M')$ предложена формула следующего вида:

$$W(m',M') = \frac{1}{R'} \int \left[\Delta \delta g'(m',M') dm' + \Delta \delta G'(m',M') dM' \right] - \int \left[\frac{\partial}{\partial M'} \int \Delta \delta g'(m',M') dm' \right] dM'$$

Заменив приращения $\Delta \delta g'$ и $\Delta \delta G'$ определяющими их приведенными выражениями и выполнив интегрирование, получаем

$$W(m, M) = \psi \cdot mM$$
, где $\psi = -\frac{2B + C - D}{R} (l \sin \gamma + L \cos \gamma) \delta$.

При этом поверхность волнового фронта имеет вид, представленный на рис. 7.

Рис. 7. Вид волнового фронта

Заключение

В ходе выполнения диссертационной работы получены следующие результаты:

1. Получены соотношения, позволяющие оценить наклон изображения при децентрировке поверхностей оптической системы.

- 2. Получено выражение закона преломления в матричной форме, на основе которого выполнен вывод инварианта декомпланарности нормалей к поверхностям зеркально-призменных систем.
- 3. Получен общий вид выражений, определяющих аберрационную функцию изображения, образованного системой нецентрированных оптических поверхностей, и выполнен их анализ; в результате анализа показано, что отдельные составляющие полученных выражений определяют обобщённую сферическую аберрацию, кому, астигматизм, кривизну поверхности изображения и его дисторсию третьего порядка, а также аберрацию, образованную световым пучком лучей, закрученным на угол π/2.
- 4. Получены выражения, определяющие аберрационную функцию изображения, образованного системой оптических поверхностей, обладающих плоскостью симметрии, и выполнен их анализ.
- 5. Получены выражения, определяющие аберрационную функцию изображения, образованного центрированной оптической системой при децентрировке отдельного компонента системы, и выполнен их анализ; показано, что в этом случае поперечная аберрация в изображении внеосевой точки содержит неизвестную ранее составляющую в виде круга, формируемую пучком лучей, закрученным на угол, равный $\pi/2$, т.е. каждый луч, проходящий через точку входного зрачка, расположенную в меридиональной образует плоскости, сагиттальную составляющую аберрации, а луч, расположенный в сагиттальной плоскости, образует меридиональную составляющую аберрации; показано, что при этом изображении направления скручивания пучков лучей В точек, стороны от плоскости децентрировки, расположенных по разные противоположны друг другу.
- 6. Определено условие интегрируемости полного дифференциала волновой аберрации, приведена последовательность определения функции волновой аберрации при известных функциях меридиональной и сагиттальной составляющих поперечной аберрации.

По теме диссертации опубликованы следующие работы

- 1. Рытова Е.С. Инвариант декомпланарности плоских поверхностей зеркальнопризменных систем // Сборник трудов «Прикладная оптика – 2010». Том 1.
- 2. Рытова Е.С. Анализ аберраций изображения, образованного нецентрированной системой оптических поверхностей // Сборник трудов «Прикладная оптика 2010». Том 2.

- 3. Зверев В.А., Рытова Е.С., Тимощук И.Н. Влияние децентрировки поверхностей вращения на положение плоскости изображения // Оптический журнал, 2010, Том 77, № 6, стр. 8–13.
- 4. Зверев В.А., Рытова Е.С. Погрешности изготовления и установки отражательных призм // Оптический журнал, 2011, Том 78, № 3, стр. 14–20.
- 5. Зверев В.А., Рытова Е.С., Тимощук И.Н. Функция волновой аберрации и ее определение // Оптика и спектроскопия, 2011, Том 110, № 6, стр. 998–1001.

Тиражирование и брошюровка выполнены в учреждении «Университетские телекоммуникации» 197101, Санкт-Петербург, Кронверкский пр., 49. Тел. (812)233 46 69 Объем 1,0 у.п.л. Тираж 100 экз.