|
Кодирование цветных изображенийОпределение цветовой системыДля измерения и представления информации о цвете в первую очередь необходимо иметь представление о его фундаментальных физических и психологических свойствах. Цвет является результатом взаимодействия света, объекта и наблюдателя (или регистрирующего прибора). При взаимодействии с объектом свет модифицируется таким образом, что регистрирующий прибор (например, как система зрения человека) воспринимает модифицированный свет как определенный цвет. Чтобы цвет как таковой существовал, необходимо присутствие всех трех этих элементов. Фактически цвет – это феномен, вызываемый восприятием аппаратом зрения человека света. Основой математического описания цвета в колориметрии является экспериментально установленный факт, что любой цвет при соблюдении определенных условий можно представить в виде смеси (суммы) определённых количеств трёх линейно независимых цветов, т. е. таких цветов, каждый из которых не может быть представлен в виде суммы каких-либо количеств двух других цветов. Групп (систем) линейно независимых цветов существует бесконечно много, но в колориметрии используются лишь некоторые из них. Три выбранных линейно независимых цвета называются первичными (primary colors). Эти цвета определяют цветовую координатную систему (ЦКС) или цветовую схему (color scheme) – набор первичных цветов, используемых для получения всех остальных. Тогда три числа, описывающие данный цвет, являются количествами основных цветов в смеси, цвет которой зрительно неотличим от данного цвета – цветовая координата данного цвета. Будучи отнесены к стандартному наблюдателю в определённых неизменных условиях, стандартные данные смешения цветов и построенные на них колориметрической ЦКС описывают фактически лишь физический аспект цвета, не учитывая изменения цветовосприятия глаза при изменении условий наблюдения и по другим причинам. Представление цвета с помощью цветовой координатной системы должно отражать свойства цветового зрения человека. Поэтому предполагается, что в основе всех цветовых схем лежит так называемая физиологическая ЦКС. Эта система определяется тремя функциями спектральной чувствительности трех различных видов приёмников света (так называемых колбочек), которые имеются в сетчатке глаза человека и, согласно наиболее употребительной трёхцветной теории цветового зрения, ответственны за человеческое цветовосприятие. Реакции этих трех приёмников на излучение считаются цветовыми координатами в физиологической ЦКС, но функции спектральной чувствительности глаза не удаётся установить прямыми измерениями. Их определяют косвенным путём и не используют непосредственно в качестве основы построения колориметрических систем. Свойства цветового зрения учитываются в колориметрии по результатам экспериментов со смешением цветов. В таких экспериментах выполняется зрительное уравнивание чистых спектральных цветов (т. е. цветов, соответствующих монохроматическому свету с различными длинами волн) со смесями трех основных цветов. При графическом построении зависимостей количеств основных цветов от длины волны получаются функции длины волны, называемые кривыми сложения цветов или просто кривыми сложения. Цветовые схемы можно разделить на две группы: схемы представления цвета от излучаемого и отраженного света. Мы видим объекты потому, что они либо излучают свет, либо светят отраженным светом. В первом случае предметы приобретают цвет испускаемого ими излучения, а во втором их цвет определяется цветом падающего на них света и цветом, который они отражают. Примером излучающего объекта является экран монитора, а отражающего – бумага, нанесенная на нее краска. Система RGBФактически основой всех цветовых схем является система, кривые сложения которой были определены экспериментально. Её основными цветами являются чистые спектральные цвета, соответствующие монохроматическим излучениям с длинами волн 700,0 нм (красный), 546,1 нм (зелёный) и 435,8 нм (синий). Эта система, принятая Международной комиссией по освещению (МКО) в 1931, получила название международной колориметрической системы МКО RGB или просто RGB (от англ. red – красный, green – зелёный, blue – синий). Система RGB является аддитивной (от англ. add – добавлять, складывать). В таких системах цвет получается путем сложения первичных цветов. При этом отсутствие всех цветов представляет собой черный цвет, а присутствие всех цветов – белый. Система аддитивных цветов работает с излучаемым светом, например, от монитора компьютера. Система CMYKОкрашенные несветящиеся объекты поглощают часть спектра белого света, освещающего их, и отражают оставшееся излучение. В зависимости от того, в какой области спектра происходит поглощение, объекты отражают разные цвета (окрашены в них). Цвета, которые используют белый свет, вычитая из него определенные участки спектра, называются субтрактивными ("вычитательными"). Для их описания используется субтрактивная модель CMY (Cyan, Magenta, Yellow). В этой модели основные цвета образуются путем вычитания из белого цвета основных аддитивных цветов модели RGB. Понятно, что в таком случае и основных субтрактивных цветов будет также три: голубой (белый минус красный), пурпурный (белый минус зеленый), желтый (белый минус синий). Система цветов CMY была широко известна задолго до того, как компьютеры стали использоваться для создания графических изображений. Её основные цвета: голубой, пурпурный и желтый является, по сути, наследниками трех основных цветов живописи (синего, красного и желтого). Изменение оттенка первых двух связано с отличием химического состава художественных красок от печатных. Как художественные, так и печатные краски не могут дать очень многих оттенков. Для улучшения качества отпечатка в число основных полиграфических красок (и в модель) внесена черная. Именно она добавила последнюю букву в название модели CMYK (черный компонент сокращается до буквы К, поскольку эта краска является ключевой (Key) в процессе цветной печати). CMYK – основная модель полиграфии и используется при выводе графической информации на печать. Система HSBСистемы цветов RGB и CMYK базируются на ограничениях, накладываемых аппаратным обеспечением (в случае RGB это мониторы, сканеры и т.п. , в случае CMYK это типографские краски ). Более интуитивным способом описания цвета является представление его в виде тона или оттенка (Hue), насыщенности (Saturation) и яркости (Brightness) – система HSB. Её вариациями являются система HSL, где используются тон (Hue), насыщенность (Saturation) и освещенность (Lightness) и система HSI – тон (Hue), насыщенность (Saturation) и интенсивность (Intensity). Тон представляет собой конкретный оттенок цвета, отличный от других: красный, зеленый, голубой и т. п. Насыщенность цвета характеризует его относительную интенсивность (или чистоту). Уменьшая насыщенность, например, красного, мы делаем его более пастельным, приближаем к серому. Яркость (освещенность или интенсивность) цвета показывает величину черного оттенка, добавленного к цвету, что делает его более темным. Система HSB имеет перед другими системами важное преимущество: она больше соответствует природе цвета, хорошо согласуется с моделью восприятия цвета человеком. Многие оттенки можно быстро и удобно получить в HSB, конвертировав затем в RGB или CMYK, доработав в последнем случае, если цвет был искажен. Поэтому система HSB часто используется при выборе пользователем цвета. |