Вернуться наверх
aco.ifmo.ru photonic
вернуться в оглавление предыдущая глава предыдущий параграф следующий параграф следующая глава


Переход от непрерывных сигналов и преобразований к дискретным

В систему обработки информации сигналы поступают, как правило, в непрерывном виде. Для компьютерной обработки непрерывных сигналов необходимо, прежде всего, преобразовать их в цифровые. Для этого выполняются операции дискретизации и квантования.

Дискретизация изображений

Дискретизация – это преобразование непрерывного сигнала в последовательность чисел (отсчетов), то есть представление этого сигнала по какому-либо конечномерному базису. Это представление состоит в проектировании сигнала на данный базис.

Наиболее удобным с точки зрения организации обработки и естественным способом дискретизации является представление сигналов в виде выборки их значений (отсчетов) в отдельных, регулярно расположенных точках. Такой способ называют растрированием, а последовательность узлов, в которых берутся отсчеты – растром. Интервал, через который берутся значения непрерывного сигнала называется шагом дискретизации. Обратная шагу величина называется частотой дискретизации,

Существенный вопрос, возникающий в ходе дискретизации: с какой частотой брать отсчеты сигнала для того, чтобы была возможность его обратного восстановления по этим отсчетам? Очевидно, что если брать отсчеты слишком редко, то в них не будет содержаться информация о быстро меняющемся сигнале. Скорость изменения сигнала характеризуется верхней частотой его спектра. Таким образом, минимально допустимая ширина интервала дискретизации связана с наибольшей частотой спектра сигнала (обратно пропорциональна ей).

Для случая равномерной дискретизации справедлива теорема Котельникова, опубликованная в 1933 году в работе “О пропускной способности эфира и проволоки в электросвязи”. Она гласит: если непрерывный сигнал имеет спектр, ограниченный частотой , то он может быть полностью и однозначно восстановлен по его дискретным отсчетам, взятым с периодом , т.е. с частотой .

Восстановление сигнала осуществляется при помощи функции . Котельниковым было доказано, что непрерывный сигнал, удовлетворяющий приведенным выше критериям, может быть представлен в виде ряда:

.

Эта теорема так же еще называется теоремой отсчетов. Функция называется еще функцией отсчетов или Котельникова, хотя интерполяционный ряд такого вида изучал еще Уитакер в 1915 году. Функция отсчетов имеет бесконечную протяженность по времени и достигает наибольшего значения, равного единице, в точке , относительно которой она симметрична.

Каждую из этих функций можно рассматривать как отклик идеального фильтра низких частот (ФНЧ) на дельта-импульс, пришедший в момент времени . Таким образом, для восстановления непрерывного сигнала из его дискретных отсчетов, их необходимо пропустить через соответствующий ФНЧ. Следует заметить, что такой фильтр является некаузальным и физически нереализуемым.

Приведенное соотношение означает возможность точного восстановления сигналов с ограниченным спектром по последовательности их отсчетов. Сигналы с ограниченным спектром – это сигналы, спектр Фурье которых отличен от нуля только в пределах ограниченного участка области определения. Оптические сигналы можно отнести к ним, т.к. спектр Фурье изображений, получаемых в оптических системах, ограничен из-за ограниченности размеров их элементов. Частоту называют частотой Найквиста. Это предельная частота, выше которой во входном сигнале не должно быть спектральных компонентов.

Квантование изображений

При цифровой обработке изображений непрерывный динамический диапазон значений яркости делится на ряд дискретных уровней. Эта процедура называется квантованием. Её суть заключается в преобразовании непрерывной переменной в дискретную переменную , принимающую конечное множество значений . Эти значения называются уровнями квантования. В общем случае преобразование выражается ступенчатой функцией (рис. 1). Если интенсивность отсчета изображения принадлежит интервалу (т.е., когда ), то исходный отсчет заменяется на уровень квантования , где  – пороги квантования. При этом полагается, что динамический диапазон значений яркости ограничен и равен .

Рис. 1.  Функция, описывающая квантование

Основная задача при этом состоит в определении значений порогов  и уровней  квантования. Простейший способ решения этой задачи состоит в разбиении динамического диапазона на одинаковые интервалы. Однако такое решение не является наилучшим. Если значения интенсивности большинства отсчетов изображения сгруппированы, например, в "темной" области и число уровней  ограничено, то целесообразно квантовать неравномерно. В "темной" области следует квантовать чаще, а в "светлой" реже. Это позволит уменьшить ошибку квантования.

В системах цифровой обработки изображений стремятся уменьшить число уровней и порогов квантования, так как от их количества зависит объем информации, необходимый для кодирования изображения. Однако при относительно небольшом числе уровней на квантованном изображении возможно появление ложных контуров. Они возникают вследствие скачкообразного изменения яркости проквантованного изображения и особенно заметны на пологих участках ее изменения. Ложные контуры значительно ухудшают визуальное качество изображения, так как зрение человека особенно чувствительно именно к контурам. При равномерном квантовании типичных изображений требуется не менее 64 уровней.