Вариант 1.

Группа Фамилия	
----------------	--

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
117.76	-85.11	-358.09	10	4	K8	Φ2	β=3 [×]

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на PAL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант 2	2.
-----------	----

Группа	 Фамилия	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики $(f', f, S_F, S_F', S_H', S_H)$ склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
51.94	-20.51	-103.39	4.50	1.50	TK2	Ф2	$\beta=-1.2^{\times}$

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на AL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Группа	Фамилия	
ı pyıllı	 Palvirijiri	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики $(f', f, S_F, S_F', S_H', S_H)$ склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
67.12	-54.54	-237.90	3.50	2.00	БФ13	ТФ10	s'=40.6

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на PAL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант 4	
-----------	--

Группа	Фамилия	
ı pyıllı	 Palvirijiri	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
36.31	-24.16	-80.54	4.00	1.50	TK2	Ф2	$\beta = -0.7^{\times}$

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на AL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Группа	 Фамилия	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
60.61	-46.98	-126.20	5.00	3.50	К14	ТФ3	s'=70.1

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на AL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант 6.

Группа	 Фамилия	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
63.83	-47.53	-179.40	3.50	2.00	БК10	ТФ3	$\beta=2.0^{\times}$

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на AL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант 7	
-----------	--

Группа	 Фамилия	
۰ ۳۶۰۰۰۰۵	 + 0.0.0.0	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
69.90	-30.55	-185.57	4.30	1.60	TK2	Ф2	s'=50.6

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на PAL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Ba	риант	8.
_ ~	P	•

Группа	Фамилия	
ı pyıllı	 Palvirijiri	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
42.26	24.37	∞	1.20	1.60	ТФ1	К8	a'=50.6

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на PAL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант 9	
-----------	--

Группа	Фамилия	
ı pyıllı	 Palvirijiri	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
61.62	-44.40	∞	7.00	2.00	TK2	Ф2	β =0.6 $^{\times}$

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на PAL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант 1	0.
-----------	----

Группа	 Фамилия	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
83.45	36.98	-209.31	2.00	3.50	Ф2	К8	β=0.7 [×]

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на PAL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант 11.

Группа	Фамилия	
--------	---------	--

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
51.94	-20.51	-109.39	4.50	1.50	TK2	Ф2	$\beta=0.7^{\times}$

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на AL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Ba	риант	г 12 .
----	-------	---------------

Группа	 Фамилия	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
52.36	30.20	∞	1.50	2.00	ТФ1	К8	$\beta=0.8^{\times}$

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на AL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант 13.	Ва	риант	13.
-------------	----	-------	-----

Группа Фамилия	
----------------	--

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
88.56	-63.50	-219.48	8.50	2.90	К8	ТФ1	s'=50.1

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на PAL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Ba	риант	14.

Группа	 Фамилия	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
81.25	44.41	-271.85	2.50	8.00	ТФ1	К8	a'=40.3

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на PAL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант	1	5.
---------	---	----

Группа	 Фамилия	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
73.28	39.08	-433.50	1.90	6.20	ТФ1	К8	$\beta=2.0^{\times}$

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на PAL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант	1	6.
---------	---	----

Группа	 Фамилия	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
78.29	41.72	-469.70	2.00	4.00	ТФ1	К8	a'=40.3

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на AL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант	17 .
---------	-------------

Группа Фам	илия
------------	------

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
117.76	-85.11	-358.09	10.00	4.00	К8	Ф2	$\beta=2.0^{\times}$

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на AL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант	18.
---------	-----

Группа	 Фамилия	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
108.34	55.28	-364.42	3.00	9.00	ТФ1	К8	β =0.5 $^{\times}$

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на AL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант ′	1	9	
-----------	---	---	--

Группа	 Фамилия	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
163.27	73.99	-83.09	2.50	7.00	БФ12	БК8	s'=200.0

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на PAL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант	20.
---------	-----

Группа	 Фамилия	
1. 7	 	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
36.31	-24.16	-80.54	4.00	1.50	TK2	Ф2	β=2.6 [×]

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты проверки на OPAL				
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

-upriunt - ii	Ва	риант	21.
---------------	----	-------	-----

Группа	 Фамилия	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
51.94	-20.51	-109.34	4.50	1.50	TK2	Ф2	$\beta=-0.9^{\times}$

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на AL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант	22 .
---------	-------------

Группа	 Фамилия	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах (IIK).

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
54.04	-42.33	-146.25	5.70	1.90	К8	ТФ1	$\beta=0.5^{\times}$

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на AL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант	23.
---------	-----

Группа	 Фамилия	
1. 7	 	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
60.61	46.98	-126.20	5.00	3.50	К14	ТФ3	a'=35.0

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на PAL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант 24.

Группа	Фамилия	
--------	---------	--

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
60.21	-44.25	-129.30	8.00	2.90	К8	ТΦ2	s'=55.0

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на PAL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант	25.
---------	-----

Группа Фам	илия
------------	------

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
36.30	-24.16	-80.54	4.00	1.50	TK2	Ф2	$\beta=-2.5^{\times}$

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на AL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант	26.
---------	-----

Группа	 Фамилия	
1. 7	 	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
60.21	-44.25	-129.30	8.00	2.90	К8	ТΦ2	a'=25.0

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на AL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант 27.

Группа	 Фамилия	
1. 7	 	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
67.12	-54.54	-237.90	3.50	2.00	БФ13	ТФ10	$\beta=2.0^{\times}$

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты проверки на OPAL				
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант	28.
---------	-----

Группа	 Фамилия	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
28.53	-41.32	-152.07	3.00	1.70	БК10	ТФ3	$\beta=-2.0^{\times}$

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты ОР	проверки на AL			
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант 29	9.
------------	----

Группа	 Фамилия	

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
48.60	-38.36	-127.34	3.00	1.50	БК10	ТФ4	a'=30.0

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты проверки на OPAL				
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка:

Вариант	30 .
---------	-------------

Группа	Фамилия	
--------	---------	--

Цель работы: применение и углубление теоретических знаний об идеальной оптической системе и параксиальной оптике. Ознакомление с программой "Опал" для выполнения оптических расчетов на персональных компьютерах

Задание для работы:

- 1. По заданным конструктивным параметрам (радиусы поверхностей, толщины, марки оптических материалов) определить параксиальные характеристики (f', f, S_F, S_H, S_H) склеенного объектива и его компонентов.
- 2. Используя соотношения для идеальной оптической системы определить передний отрезок S, задний отрезок S', и увеличение β склеенного объектива. Проверить с помощью программы ОПАЛ правильность решения.
- 3. Определить линейное увеличение первой линзы β_1 и положение ее изображения S'_1 , приняв передний отрезок первой линзы равным переднему отрезку объектива ($S_1 = S_{o\delta}$).
- 4. Определить линейное увеличение второй линзы β_2 и положение ее изображения S'_2 , приняв передний отрезок второй линзы равным заднему отрезку первой линзы ($S_2 = S_1'$).
- 5. Построить изображение графически через объектив и через каждую линзу в отдельности.

Оформление работы. В отчете должны быть приведены:

В отчете должны быть приведены:

- 1. Рассчитанные параксиальные характеристики склеенного объектива и каждой линзы в отдельности.
- 2. Расчеты по формулам идеальной оптической системы на основании заданных в индивидуальном задании исходных данных для склеенного объектива и отдельных линз.
- 3. Чертежи объектива и отдельных линз с указанием положения и численного значения главных плоскостей и фокусов (3 чертежа).
- 4. Чертежи с графическим построением изображения через склеенный объектив и через каждую линзу в отдельности (3 чертежа).

Данные к лабораторной работе:

r1	r2	r3	d1	d2	Стекло	Стекло	Данные
37.40	-47.53	-179.40	3.50	2.00	БК10	ТФ3	$\beta=-1.5^{\times}$

Параксиальные характеристики:

	f	f'	S_F	S_F'	$S_{\scriptscriptstyle H}$	S_H'
вся система						
1-я линза						
2-я линза						

Результаты вычислений:

		резул	результаты проверки на OPAL				
	s	z	z'	s'	β	s'	β
вся система							
1-я линза							
2-я линза							

Проверка: